Cytoprotective effects of proteasome β5 subunit overexpression in lens epithelial cells

نویسندگان

  • Yizhi Liu
  • Xialin Liu
  • Tieying Zhang
  • Coralia Luna
  • Paloma B. Liton
  • Pedro Gonzalez
چکیده

PURPOSE To determine whether the overexpression of the proteasome catalytic beta5 subunit (PSMB5) can induce the expression of the catalytic subunits beta1 and beta2, enhance proteasome activity, and exert a cytoprotective effect in lens epithelial cells. METHODS Cells from the human lens epithelial cell line SRA01/04 (LECs) were stably transfected either with a plasmid expressing the proteasome catalytic subunit beta5 or with an empty plasmid. beta-5-expressing LECs and controls were analyzed for the expression of beta1, beta2, beta5, and alpha6 proteasome subunits; chymotrypsin-like (CT-L) and peptidylglutamyl-peptide hydrolase (PGPH) catalytic activities; as well as for the accumulation of carbonylated proteins, rates of cell viability, and apoptosis after oxidative stress. RESULTS Stable expression of the beta5 proteasome subunit resulted in increased expression of the catalytic subunits beta1 and beta2, increased CT-L and PGPH proteasome activities, and increased resistance to accumulation of carbonylated proteins and cell death after oxidative stress. CONCLUSIONS The proteasome activity can be genetically "upregulated" in lens cells by overexpression of the beta5 catalytic subunit. The resulting increase in proteasome activity leads to a decrease in the accumulation of oxidized proteins and enhanced cell survival following oxidative stress.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potent anti-tumor activity of a syringolin analog in multiple myeloma: a dual inhibitor of proteasome activity targeting β2 and β5 subunits

Proteasome inhibitors (PI), mainly targeting the β5 subunit of the 20S proteasome, are widely used in the treatment of multiple myeloma (MM). However, PI resistance remains an unresolved problem in the therapy of relapsed and refractory MM. To develop a new PI that targets other proteasome subunits, we examined the anti-MM activity of a novel syringolin analog, syringolog-1, which inhibits the ...

متن کامل

The Polymorphisms with Cataract Susceptibility Impair the EPHA2 Receptor Stability and Its Cytoprotective Function.

Despite accumulating evidence revealing susceptibility genes for age-related cataract, its pathophysiology leading to visual impairment at the cellular and molecular level remains poorly understood. Recent bioinformatic studies uncovered the association of two single nucleotide polymorphisms in human EPHA2, rs2291806 and rs1058371, with age-related cataract. Here we investigated the role of EPH...

متن کامل

Inactivating PSMB5 mutations and P-glyco- protein (MDR1/ ABCB1) mediate resistance to proteasome inhibitors: ex vivo efficacy of (immuno) proteasome inhibitors in mononuclear blood cells from rheumatoid arthritis patients

Submitted 5 Inactivating PSMB5 mutations and P-glyco-protein (MDR1/ ABCB1) mediate resistance to proteasome inhibitors: ex vivo efficacy of (immuno) proteasome inhibitors in mononuclear blood cells from rheumatoid arthritis patients 106 Abstract Bortezomib (BTZ), a registered proteasome inhibitor (PI) for multiple myeloma, has also been proposed as a potential anti-rheumatic agent. Its reported...

متن کامل

The ubiquitin proteasome system is required for cell proliferation of the lens epithelium and for differentiation of lens fiber cells in zebrafish.

In the developing vertebrate lens, epithelial cells differentiate into fiber cells, which are elongated and flat in shape and form a multilayered lens fiber core. In this study, we identified the zebrafish volvox (vov) mutant, which shows defects in lens fiber differentiation. In the vov mutant, lens epithelial cells fail to proliferate properly. Furthermore, differentiating lens fiber cells do...

متن کامل

Downregulation of 26S proteasome catalytic activity promotes epithelial-mesenchymal transition

The epithelial-mesenchymal transition (EMT) endows carcinoma cells with phenotypic plasticity that can facilitate the formation of cancer stem cells (CSCs) and contribute to the metastatic cascade. While there is substantial support for the role of EMT in driving cancer cell dissemination, less is known about the intracellular molecular mechanisms that govern formation of CSCs via EMT. Here we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular Vision

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2007